Quantum Vertex Representations via Finite Groups and the Mckay Correspondence

نویسندگان

  • IGOR B. FRENKEL
  • WEIQIANG WANG
چکیده

We establish a q-analog of our recent work on vertex representations and the McKay correspondence. For each finite group Γ we construct a Fock space and associated vertex operators in terms of wreath products of Γ×C and the symmetric groups. An important special case is obtained when Γ is a finite subgroup of SU2, where our construction yields a group theoretic realization of the representations of the quantum affine and quantum toroidal algebras of ADE type.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-parameter quantum vertex representations via finite groups and the McKay correspondence

We introduce two-parameter quantum toroidal algebras of simply laced types and provide their group theoretic realization using finite subgroups of SL2(C) via McKay correspondence. In particular our construction contains a realization of the vertex representation of the two-parameter quantum affine algebras of ADE types.

متن کامل

Twisted Vertex Representations via Spin Groups and the Mckay Correspondence

We establish a twisted analog of our recent work on vertex representations and the McKay correspondence. For each finite group Γ and a virtual character of Γ we construct twisted vertex operators on the Fock space spanned by the super spin characters of the spin wreath products Γ ≀ S̃n of Γ and a double cover of the symmetric group Sn for all n. When Γ is a subgroup of SL2(C) with the McKay virt...

متن کامل

Vertex Representations via Finite Groups and the Mckay Correspondence

where the first factor is a symmetric algebra and the second one is a group algebra. The affine algebra ĝ contains a Heisenberg algebra ĥ. One can define the so-called vertex operators X(α, z) associated to α ∈ Q acting on V essentially using the Heisenberg algebra ĥ. The representation of ĝ on V is then obtained from the action of the Heisenberg algebra ĥ and the vertex operators X(α, z) assoc...

متن کامل

Twisted Vertex Representations and Spin Characters

We establish a new group-theoretic realization of the basic representations of the twisted affine and twisted toroidal algebras of ADE types in the same spirit of our new approach to the McKay correspondence. Our vertex operator construction provides a unified description to the character tables for the spin cover of the wreath product of the twisted hyperoctahedral groups and an arbitrary fini...

متن کامل

The Mckay Correspondence

The McKay correspondence gives a bijection between the finite subgroups of SU(2) and the affine simply laced Dynkin diagrams. In particular, this bijection associates naturally to each finite dimensional representation of SU(2) a vertex of the corresponding diagram. The goal of this talk will be to construct this correspondence and to discuss some proofs and generalizations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999